بایگانی برچسب برای: آهن چیست

آهن چیست

آهن چیست

تاریخچه

اولین آهن شکل گرفته که توسط بشر در دوره پیش از تاریخ مصرف شد از شهاب سنگ‌ها آمده بود. ذوب آهن در کوره‌ها در هزاره دوم پیش از میلاد شروع شد، آثار مکشوفه از آهن ذوب شده از ۱۲۰۰-۱۸۰۰ پیش از میلاد در هند و در مشرق از حدود ۱۵۰۰ پیش از میلاد بدست آمد (که گمان می‌رود ناشی از ذوب آهن در آناتولی یا قفقاز بوده‌است). چدن برای اولین بار در حدود ۵۵۰ پیش از میلاد در چین تولید شد اما در اروپا تا سال‌های قرون وسطا تولید نشد، در طول دوران قرون وسطا ابزاری در اروپا کشف شد که از آهن شکل یافته از چدن (pig Iron) با استفاده از ریخته گری زیور آلات تولید شده بودند، برای تمام این فرآیندها از ذغال چوب به عنوان سوخت استفاده شد. فولاد (که با کربن کمتر از pig Iron است اما آهن شکل یافته بیشتری دارد) اولین بار در دوران باستان تولید شد. روش‌های تازهٔ تولید آن به وسیله میله‌های کربنیزه کردن آهن در فرآیند سیمانی کردن در قرن هفدهم بعد از میلاد ابداع شد. در انقلاب صنعتی روش‌های جدید تولید آهن بدون ذغال چوب ابداع شد و این روش‌ها بعداً در تولید فولاد مورد استفاده قرار گرفتند. در اواخر دهه ۱۸۵۰، هنری بسمر فرآیند جدیدی برای ساخت فولاد اختراع کرد که شامل دمیدن هوا از روی چدن مذاب برای تولید فولاد نرم بود. این فرآیند و دیگر فرآیندهای ابداع شده در قرن ۱۹ و بعد از آن منجر یه آن شد که دیگر آهن شکل یافته تولید نشود.

آهن چیست؟

آهن عنصر شیمیایی فلزی ایست با نماد Fe، عدد اتمی 26 و چگالی 7.87g/cm3 ، آهن در گروه 8 و دوره 4 عناصر است، بنابراین به عنوان فلز واسطه دسته ‌بندی شده است. آهن و آلیاژهای آن از رایج‌ترین فلزات و رایج‌ترین مواد فرومغناطیسی در کاربردهای روزمره هستند. آهن دارای سطوح صاف و نقره ای براق مایل به رنگ خاکستری‌ست اما وقتی در هوا با اکسیژن ترکیب می‌شود به رنگ قرمز یا قهوه ای در می آید که به آنها اکسید درای ترکیبات آهن یا زنگ گفته می شود. کریستال‌های خالص آهن نرمه (نرم تر از آلمینیوم) و با اضافه کردن مقدار کمی ناخالصی مانند کربن مقدار قابل توجهی تقویت می شود. مقادیر مناسب و کمی (تا چند درصد) از فلزات دیگر و کربن، تولید فولاد می‌کند که می تواند 1000 بار سخت تر از آهن خالص باشد. آهن عنصريست چند شكلي بدين معني كه در فشار 1آتمسفر با افزايش دما شبكه بلوري آن تغيير مي كند. آلفا يا آهن فريتي از صفر مطلق تا 912درجه سانتيگراد،آهن گاما يا آهن آستنيتي –در دماي 912_1394آهن دلتا واز 1394تا نقطه ذوب آهن خالص يا 1538درجه سانتي گراد پايدار است.

 

 آهن آلفا

آهن آلفا يا آهن فريتي جزء سيستم مكعبي بوده وشبكه بلوري آن مكعب مركز دار است.

آهن گاما

واحد شبكه ي بلوري آهن گاما يا آهن آستنيتي متعلق به سيستم بلوري مكعبي است.ولي داراي شبكه بلوري مكعب با سطوح مركزي FCCاست وجمعا4اتم در واحد شبكه ي آهن گاما وجود دارد.

 آهن دلتا

آخرين فازي كه ممكن است در آهن خالص وجود داشته باشد،آهن دلتا با شبكه BCC بوده واز نظر بلور شناسي مشابه آهن آلفا است .افزايش حجم ناشي از تبديل آهن گاما به آهن دلتا درست برابر افزايش حجم ناشي از تبديل آهنگاما ب آهن آلفا است.آهن دلتا فقط در دماهاي نزديك نقطه ذوب آهن تشكيل ميشود.

آهن با نماد شیمیایی Fe، نام یک عنصر شیمیایی با عدد اتمی ۲۶ و چگالی ۷٫۸۷g/cm۳ است که در نخستین دوره فلزهای واسطه جای دارد. آهن از نظر جرمی، بزرگترین عنصر سازنده زمین است. این عنصر مهم ترین سازنده هسته بیرونی و درونی زمین و چهارمین عنصر مهم در پوسته است. فراوانی آهن در سیاره‌های زمین‌سان مانند کره زمین، به دلیل همجوشی هسته‌ای در ستاره‌های بزرگ است.

آهن خالص فلز است، اما به ندرت در این شکل روی سطح زمین یافت می‌شود زیرا در حضور اکسیژن و رطوبت یه آسانی اکسیده می‌شود. به منظور به دست آوردن فلز آهن، اکسیژن باید از سنگ معدن‌های طبیعی توسط کاهش شیمیایی حذف شود– به طور عمده از سنگ آهن از سنگFe2O۳ توسط کربن در درجه حرارت بالاست. خواص آهن را می‌توان با تولید آلیاژهایی از آن با استفاده از فلزات متنوع گوناگون (و بعضی غیر فلزها به ویژه کربن و سیلیکون) اصلاح نمود و فولادها را ایجاد کرد. هسته اتم‌های آهن تقریبا دارای بالاترین انرژی‌های اتصال در هر نکلئون است و تنها ایزوتوپNi۶۲ دارای انرژی بیشتر از آن می‌باشد. هرچند فراوان‌ترین نوکلیدهای پایدار همان Fe۵۶ می‌باشد، این آهن از طریق همجوشی هسته‌ای در ستاره‌های شکل گرفته‌است و اگرچه اندکی انرژی کمتر نیز از طریق سنتز کردن نیکل ۶۲ نیز استخراج می‌گردد. شرایط در ستارگان برای ایجاد این فرآیند مناسب نیست. توزیع عنصر آهن بر روی زمین بسیار بیشتر از نیکل است و احتمالا در تولید عنصر از طریق سوپر نوا نیز همینطور است. آهن (آهن Fe+۲، یون فروس) عنصر ردیابی لازمی‌ست که تقریبا تمام موجودات زنده از آن استفاده می‌کنند. تنها استثناهای این موضوع چندین موجود زنده‌ای هستند که در محیط‌های فقیر از نظر آهن زندگی می‌کنند و به گونه‌ای تکامل یافته‌اند که عناصر گوناگونی را در فرآیندهای متابولیکشان مورد استفاده قرار دهند مثل منگنز به جای آهن برای تجزیه و یا هموسیانین به جای هموگلوبین. آنزیم‌های حاوی آهن معمولاً دارای گروه‌های هموپروستاتیک هستند که در تجزیه واکنش‌های اکسیداسیون در زیست‌شناسی و در انتقال تعدادی از گازهای حل شدنی شرکت می‌کنند.

خواص مکانیکی

خواص مکانیکی و آلیاژهای آن با استفاده از آزمون‌های گوناگون مانند آزمون برنیل و راکول یا آزمایش‌های مقاومت کششی ارزیابی می‌شود، نتایج این قسمت‌ها به گونه‌ای با یکدیگر سازگارند که قسمت‌های آهن اغلب برای مرتبط نمودن نتایج یک تست با تست دیگر به کار می‌رود. اندازه گیری‌ها نشان می‌دهد که خواص مکانیکی آهن عمدتا بستگی به خلوص دارد به گونه‌ای که خالص‌ترین کریستال‌های تک آهن که برای مقاصد تحقیقاتی تولید شده‌اند از آلومینیوم نرم ترند، افزودن تنها ۱۰ قسمت در میلیون کربن مقاومتش را دو برابر می‌کند. سختی نیز به سرعت با افزایش مقدار کربن تا ۰/۲٪ و اشباع شده تقریبا در ۰/۶٪ به سرعت افزایش می‌یابد. خالص‌ترین آهن تولید شدهٔ صنعتی (تقریبا ۹۹/۹۹٪ خلوص) دارای سختی ۲۰-۳۰ برنیل است.

آهن چیست

آهن چیست

پیدایش

آهن ششمین عنصر از لحاظ فراوانی در جهان است که در آخرین کنش نکلئوسنتز در ستاره‌های بزرگ از طریق سیلیکون فیوزینگ ایجاد می‌شود در حالی که آهن حدود ۵٪ از پوسته زمین را تشکیل می‌دهد، اعتقاد بر این است که هسته زمین در حد زیادی از یک آلیاژ آهن-نیکل تشکیل شده‌است که ۳۵٪ جرم کل زمین را تشکیل می‌دهد، بنابر این آهن فراوانترین عنصر روی زمین است ولی در پوسته زمین چهارمین عنصر از لحاظ فراوانی می‌باشد. بیشتر آهن پوسته به شکل ترکیبی با اکسیژن به صورت سنگ‌های معدنی اکسید آهن مثل هماتیت و مگنتیت یافت می‌شود. حدود یکی از بیست شهاب سنگ تنها از مواد معدنی آهن-نیکل تائنیت (۳۵-۸۰٪ آهن) و کاماسیت (۹۰-۹۵٪ آهن) تشکیل شده‌اند. اگر چه تعاد اندکی از شهاب سنگ‌های آهنی بیشترین شکل آهن فلزی طبیعی در سطح زمین می‌باشند. تصور بر این است که رنگ قرمز سطح مریخ ناشی از رگولیت غنی اکسید آهن است.

 

ایزوتوپ‌ها

آهن به طور طبیعی متشکل از ۴ ایزوتوپ: ۵/۸۴۸٪ رادیواکتیو Fe۵۴ (نیمه عمر بزرگتر از ۳/۱ × ۲۲ ۱۰سال)، ۹۱/۷۵۴٪ Fe۵۶ پایدار، ۲/۱۱۹٪ ازFe۵۷پایدار و ۰/۲۸۲٪ از Fe۵۸ پایدار می‌باشد. Fe۶۰ یک رادیونیوکلاید منقرض شده با نیمه عمر طولانی (۱/۵ میلیون سال) می‌باشد. بیشتر کارهای قبلی در اندازه گیری ترکیب ایزوتوپیک Fe بر تعیین انواع Fe۶۰ تولید شده از فرایندهای همراه با نکلئو سنتز (یعنی مطالعات شهاب سنگ) و تشکیل سنگ معدن متمرکز شده‌است. هرچند در دهه اخیر پیشرفت تکنولوژی طیف سنجی جرمی اجازه تشخیص و ارزیابی تغییرات طبیعی در نسبت‌های ایزوتوپ‌های پایدار آهن را داده‌است. بیشتر این کار به وسیله انجمن‌های علوم زمین و سیاره‌ای انجام شده‌است، هرچند کاربردهای آن در سیستم‌های بیولوژیک و صنعتی در حال آغاز شدن می‌باشد. فراوان‌ترین ایزوتوپ آهن Fe۵۶ مورد توجه ویژه دانشمندان هسته‌ای می‌باشد. تصور غلط رایج این است که این ایزوتوپ پایدارترین هسته ممکن است و لذا انجام شکافت یا همجوشی در Fe۵۶ و آزاد سازی انرژی از آن غیر ممکن است این مطلب درست نیست، چرا که هم Ni۶۲ و هم Fe۵۸ پایدار ترند و پایدارترین هسته می‌باشند. هرچند چون نیکل Ni۵۶ در واکنش‌های هسته‌ای سوپر نوا در فرایند α از هسته‌های سبکتر به گونه‌ای بسیار آسانتر تولید می‌شود، نیکل ۵۶ (ذرات آلفای ۱۴)آخرین نقطه زنجیره همجوشی در ستاره‌های بسیار عظیم می‌باشد، و از آنجا که افزودن یک آلفای دیگر روی-۶۰ را تولید می‌کند که نیاز به مقدار بسیار بیشتری انرژی دارد. این نیکل ۵۶، که دارای نیمه عمر حدود ۶ سال است به مقدار زیاد در این ستاره‌ها ساخته می‌شود اما به زودی توسط دو انتشار پزیترون پی در پی در درون محصولات تاخیری سوپر نوا در ابر گاز باقی مانده از سوپر نوا به اولین رادیو اکتیو کبالت ۵۶، و سپس آهن ۵۶ پایدار متلاشی می‌شود. این هسته اخیر بنابر این در همه جای دنیا در مقایسه با دیگر فلزات پایدار با وزن اتمی تقریبا مشابه دارای فراوانی بیشتریست. در فازهای شهاب سنگ‌های سمارکونا و چرونیکات ارتباطی بین غلظت Na۶۰، محصول دختر Fe۶۰، و فراوانی ایزوتوپ‌های آهن پایدار قابل مشاهده بود که نشان از وجود Fe۶۰ در زمان تشکیل منظومه شمسی دارد. احتمالا انرژی رها شده از فروپاشی آهن ۶۰ همراه با انرژی رها شده از فروپاشی رادیونیکلاید Al۲۶ در ذوب دوباره و افتراق سیارات بعد از تشکیل آن‌ها در ۴/۶ بیلیون سال پیش مشارکت داشته‌است. فراوانی Na۶۰ موجود در مواد فرا زمینی نیز ممکن است اطلاعات بیشتری نسبت به منشا منظومه شمسی و تاریخ ابتدایی آن ارائه دهد. از میان ایزوتوپ‌های پایدار، تنها Fe۵۷ یک اسپین هسته‌ای (-۱/۲) دارد.

 

شیمی و ترکیبات

آهن ترکیباتی را ایجاد می‌کند که عمدتا در حالت‌های اکسیداسیون +۲ و +۳ هستند. به طور سنتی، ترکیبات آهن II فروس نامیده می‌شوند و ترکیبات آهن (III) فریک نامیده می‌شود. ترکیبات زیادی در هر یک از حالات اکسیداسیون وجود دارد که مثال‌هایی از آن شامل سولفات آهن (II) (FeSo4) و کلرید آهن (III) (FeCl3) می‌باشد. همچنین مثال‌های بیشماری از ترکیباتی که شامل اتم‌های آهن در هر دوی این حالات اکسیداسیون وجود دارد مانند مگنتیک و آبی پروسی. آنیون منفی فریت [Fe ۲۴] شامل یک مرکز آهن، (Vi) بالاترین حالت اکسیداسیون شناخته شده آن می‌باشد و مثلا در فریت پتاسیم (کا دو اف ای اُ ۴) وجود دارد. ترکیبات اورگانومتالیک بی شماری (مثل پنتا کربنیل آهن) وجود دارند که دارای آهن زیرو ولنت (یا کمتر) هستند

آهن و فرایند عملیات حرارتی آن چیست

آهن چیست؟

به طور کلی آهن خام از سنگ معدن اکسیدی در کوره های بلند بوجود می آید.می بایستی به صورت متناوب کک، سنگ معدن و مواد کمک ذوب را به کوره مورد نظر اضافه کنیم  تا اینکه کک و مواد فوق ذوب بسوزد و سنگ معدن احیاء شود به عبارت دیگر پیوندی که بین آهن و اکسیژن وجود دارد شکسته می شود و در نهایت آهن آزاد می شود. در بعضی از مواقع ممکن است اکسیژن سنگ معدن با کربن حاصل از گاز سوختی و یا بطور مستقیم با کربن کک ترکیب شود.

نکته: عنصرهای سیلیسیم و منگنز خصوصیات استفاده بعدی از آهن خام را به عنوان آهن خام سفید و یا آهن خام خاکستری تعیین می کنند.

عملیات حرارتی مواد آهن – کربن

از آنجایی که در روشهای مختلف ساخت همچون نورد، آهنگری، ریخته گری، براده برداری، جوشکاری و … این امکان وجود دارد که در قطعه تنشهایی بوجود بیاید که می بایستی این تنشها را از طریق عملیات حرارتی برطرف نمود.

عملیات حرارتی را می توان به آنیل کردن و سخت گردانی تقسیم نمود بدین وسیله قطعه های ساخته شده در کوره قرار گرفته و دمای آن تغییر داده می شود. لازم به ذکر است که دادن گرما تابعی از مقدار کربن و عناصر آلیاژی می باشد.

نکته: جهت کاهش سختی و افزایش میزان قابلیت شکل دادن(تغییر فرم پلاستیکی ) باید آنیل کردن در دمای پایینی انجام شود که در نهایت این امر باعث می شود عملیات ماشینکاری آسانتر شود.

تفاوت آهن خام سفید و آهن خام خاکستری

آهن خام سفید جهت فولاد سازی و چدن چکش خوار به کار می رود به این علت که منگنز موجود در آهن خام سفید زیاد است و کربن آن بصورت سمنتیت قرار می گیرد ولی از آنجایی که در آهن خام خاکستری مقدار سیلیسیم بالا هست و کربن ممکن است بصورت گرافیت آزاد در ساختار آن قرار گیرد موجب می شود که از این نوع آهن در تولید چدن استفاده به عمل بیاید.

در جدول ذیل تاثیر عناصر آلیاژی روی خواص فولاد، چدن و سایر مواد آهنی را مورد بررسی قرار می دهیم.

کاهش افزایش عناصر آلیاژی
دمای ذوب (خط مایع) قابلیت جوشکاری و آهنگری، تغییر طول نسبی استحکام، سختی، قابلیت سخت کردن کربن
قابلیت جوشکاری و آهنگری تشکیل گرافیت، قابلیت سخت کاری مغزی، الاستیسیته (فولادهای فنر)، استحکام، مقاومت به خوردگی (مقاومت به اسید) سیلیسیم
تشکیل گرافیت در چدن خاکستری، قابلیت براده برداری، قابلیت جذب انرژی(چقرمگی) تشکیل سمنتیت، سختی، استحکام، سایش،گوگردگیری منگنز
استحکام ضربه ای (شکنندگی سرد با بیش از 0.03%)تغییر طول نسبی روان شدن چدن خاکستری، سختی، مقاومت به حرارت فسفر
استحکام، استحکام ضربه ای روان شدن مذاب چدن خاکستری، شکنندگی براده گوگرد
تغییر طول نسبی، قابلیت جوشکاری و آهنگری استحکام، سختی، دمای سخت کردن مقاومت به سایش، مقاومت به خوردگی کرم تنگستن
تغییر طول نسبی گرم استحکام، سختی، مقاومت به حرارت، مقاومت خوردگی نیکل
حساسیت به دمای بالا سختی، چقرمگی، مقاومت به حرارت وانادیوم
تغییر طول نسبی، قابلیت آهنگری سختی، مقاومت به حرارت مولیبدن
حساسیت به دمای بالا سختی کبالت